
The NoiseSocket Protocol

Alexey Ermishkin Trevor Perrin

Revision 1, 2017-07-27

Contents
Abstract 1

1. Overview 2

2. Message Formats 2
2.1. Handshake messages . 3
2.2. Transport messages . 3
2.3. Encrypted payloads . 3

3. Negotiation 3

4. Prologue 5

5. API 5

6. IPR 7

7. Acknowledgements 7

8. References 7

Abstract

NoiseSocket is an extension of the Noise Protocol Framework that enables quick
and seamless secure connections with minimal code size, small keys, modern
ciphers and hash functions, and extremely fast speed. It can be used with raw
public keys instead of X.509 infrastructure and targets IoT devices, microservices,
and back-end applications such as datacenter-to-datacenter communications.

1

1. Overview

The Noise Protocol Framework [1] describes simple Noise protocols. A Noise
protocol sends a fixed sequence of handshake messages based on a fixed set of
cryptographic choices. In some situations this is too rigid, and the responder
needs flexibility to accept or reject the initiator’s Noise protocol choice, or make
its own choice based on options offered by the initiator.

The NoiseSocket framework allows the initiator and responder to negotiate a
particular Noise protocol. This is a two-step process:

• The initiator begins executing an initial Noise protocol and sends an initial
Noise handshake message. As a preamble to this message, the initiator can
send some negotiation data which indicates the initial Noise protocol
and can advertise support for other Noise protocols.

• The responder can accept the initiator’s choice of initial Noise protocol,
change to a different Noise protocol, or reject the initiator’s message
entirely. The responder indicates this choice by sending some negotiation
data back to the initiator, or closing the connection.

NoiseSocket doesn’t specify the contents of negotiation data, since different
applications will encode versions and advertise protocol support in different ways.
NoiseSocket just defines a message format to transport this data, and APIs to
access it.

NoiseSocket handles two other low-level issues:

• NoiseSocket defines length fields for all messages, so NoiseSocket messages
can be used with stream-based protocols like TCP.

• NoiseSocket defines padding fields which are included in every ciphertext,
so that applications can pad their messages to avoid revealing plaintext
lengths to an eavesdropper.

2. Message Formats

A NoiseSocket protocol begins with a handshake phase. During the handshake
phase each NoiseSocket message contains a single handshake message from
some underlying Noise protocol, plus optional negotiation data.

After the handshake completes, NoiseSocket enters the transport phase where
each NoiseSocket message contains a transport message from some underlying
Noise protocol.

All transport messages and some handshake messages contain an encrypted
Noise payload. Each encrypted payload contains a plaintext with a body (its
actual contents) followed by padding.

2

The following sections describe the format for NoiseSocket handshake and trans-
port messages, and encrypted payloads.

2.1. Handshake messages

All NoiseSocket handshake messages have the same structure:

• negotiation_data_len (2 bytes)
• negotiation_data
• noise_message_len (2 bytes)
• noise_message

The negotiation_data_len and noise_message_len fields are 2-byte unsigned
integers, encoded in big-endian, that store the number of bytes for the following
negotiation_data and noise_message fields.

2.2. Transport messages

All NoiseSocket transport messages have the same structure:

• noise_message_len (2 bytes)
• noise_message

The noise_message_len field is a 2-byte unsigned integer, encoded in big-endian,
that stores the number of bytes for the following noise_message field.

2.3. Encrypted payloads

Some Noise messages will carry an encrypted payload. When this payload is
decrypted, the plaintext will have the following structure:

• body_len (2 bytes)
• body
• padding

The body_len field is a 2-byte unsigned integer, encoded in big-endian, that
stores the number of bytes for the following body field. Following the body
field the remainder of the plaintext will be padding bytes, which may contain
arbitrary data and must be ignored by the recipient.

3. Negotiation

The initiator will choose the initial underlying Noise protocol, and will indicate
this to the responder using the negotiation_data field.

3

Upon receiving an initial NoiseSocket message, the responder has five options:

• Silent rejection: The responder closes the network connection.

• Explicit rejection: The responder sends a single NoiseSocket handshake
message. The negotiation_data field must be non-empty and contain an
error message. The noise_message field must be empty. After sending
this message, the responder closes the network connection.

• Acceptance: The responder sends a NoiseSocket handshake message
containing the next handshake message in the initial Noise protocol. The
negotiation_data field must be empty.

• Change protocol and send fallback message: The responder sends
a NoiseSocket handshake message containing a handshake message from
a new Noise protocol, different from the initial Noise protocol. The
negotiation_data field must be non-empty. The noise_message field
must be non-empty.

• Change protocol and send reinitialization request: The responder
requests the initiator to send a NoiseSocket handshake message containing
a handshake message from a new Noise protocol, different from the initial
Noise protocol. The negotiation_data field must be non-empty. The
noise_message field must be empty.

The initiator’s first negotiation_data field must indicate the initial Noise
protocol and what other Noise protocols the initiator can support. How this is
encoded is up to the application.

If the responder’s first negotiation_data field is empty, then the initial protocol
was accepted. If the field is non-empty, it must encode values that distinguish
betwen the “explicit rejection”, “fallback”, and “reinitialization request” cases.
In the first case, the negotiation_data must encode an error message. In the
latter two cases, the negotiation_data must encode the Noise protocol the
initiator should fallback to or reinitialize with.

When the initiator receives the first NoiseSocket response message, and for all
later handshake messages received by both parties, the only options are silent
rejection, explicit rejection, or acceptance.

Example negotiation flows:

• It’s easy for the responder to change symmetric crypto options us-
ing a fallback protocol. For example, if the initial Noise protocol
is Noise_XX_25519_AESGCM_SHA256, the responder can fallback to
Noise_XX+fallback_25519_ChaChaPoly_BLAKE2s. This reuses the
ephemeral public key from the initiator’s initial message.

• If the initiator attempts 0-RTT encryption that the responder fails to
decrypt, the responder can use a fallback protocol. For example, if the
initial Noise protocol is Noise_IK_25519_AESGCM_SHA256, the responder

4

can fallback to Noise_XX+fallback_25519_AESGCM_SHA256. This reuses
the ephemeral public key from the initiator’s initial message.

• If the responder wants to use a DH function that the initiator supports
but did not send an ephemeral public key for, in the initial message, then
the responder might need to request reinitialization. For example, if the
initial Noise protocol is Noise_XX_25519_AESGCM_SHA256, the responder
can request reinitialization to Noise_XX_448_AESGCM_SHA256, causing the
initiator to respond with a NoiseSocket message containing the initial
message from the Noise_XX pattern with a Curve448 ephemeral public
key.

4. Prologue

Noise protocols take a prologue input. The prologue is cryptographically
authenticated to make sure both parties have the same view of it.

The prologue for the initial Noise protocol is set to the UTF-8 string “Nois-
eSocketInit1” followed by all bytes transmitted prior to the noise_message_len.
This consists of the following values concatenated together:

• The UTF-8 string “NoiseSocketInit1”
• The initial message’s negotiation_data_len
• The initial message’s negotiation_data

If the responder changes the Noise protocol, the prologue is set to the UTF-8
string “NoiseSocketInit2” followed by all bytes received and transmitted prior
to the noise_message_len. This consists of the following values concatenated
together:

• The UTF-8 string “NoiseSocketInit2”
• The initial message’s negotiation_data_len
• The initial message’s negotiation_data
• The initial message’s noise_message_len
• The initial message’s noise_message
• The responding message’s negotiation_data_len
• The responding message’s negotiation_data

5. API

The initiator uses the following functions during the handshake phase. These
functions are described in the order they would typically be used to send the
initial handshake message and process the first response. In particular, the
initiator would “peek” at the negotiation data in the first response message, then

5

decide whether reinitialization is necessary (if the negotiation data indicates a
reinitialization request or a fallback message).

Initialize:

• INPUT: pattern, dh, cipher, hash
• OUTPUT: session object

WriteHandshakeMessage:

• INPUT: negotiation_data, message_body, padded_len
– negotiation_data is zero-length if omitted
– message_body is zero-length if omitted
– If this message has an encrypted payload and noise_message_len

would be less than padded_len, padding is added to make
noise_message_len equal padded_len.

• OUTPUT: handshake_message

PeekHandshakeMessage:

• INPUT: handshake_message
• OUTPUT: negotiation_data

Reinitialize:

• INPUT: fallback pattern or reinitialization pattern, dh, cipher, hash
• OUTPUT: session object

ReadHandshakeMessage:

• INPUT: handshake_message
• OUTPUT: message_body

The server will use the same functions, except it will first “peek” at the initial mes-
sage, then call Initialize if it is accepting the initial protocol, or Reinitialize
if it is changing protocols with a fallback message or reinitialization request.

If the responder is sending an explicit rejection or reinitialization request, it will
use the following function:

WriteEmptyHandshakeMessage:

• INPUT: negotiation_data
• OUTPUT: handshake_message

Following the first exchange of handshake messages, the parties will continue call-
ing ReadHandshakeMessage and WriteHandshakeMessage until the handshake
is complete.

After the handshake is complete, both parties will call WriteMessage and
ReadMessage to send transport messages. Every call to WriteMessage will
produce a NoiseSocket transport message, and every call to ReadMessage will
decrypt a NoiseSocket transport message and return its body.

6

WriteMessage:

• INPUT: message_body, padded_len
– padded_len is zero (no padding) if omitted
– If noise_message_len would be less than padded_len, padding is

added to make noise_message_len equal padded_len.
• OUTPUT: transport_message

ReadMessage:

• INPUT: transport_message
• OUTPUT: message_body

6. IPR

The NoiseSocket specification (this document) is hereby placed in the public
domain.

7. Acknowledgements

Thanks to Rhys Weatherley for helpful discussion.

8. References

[1] T. Perrin, “The Noise Protocol Framework.” 2017. https://noiseprotocol.org

7

https://noiseprotocol.org

	Abstract
	1. Overview
	2. Message Formats
	2.1. Handshake messages
	2.2. Transport messages
	2.3. Encrypted payloads

	3. Negotiation
	4. Prologue
	5. API
	6. IPR
	7. Acknowledgements
	8. References

